
Cookies vs JWTs
Filip Sodic, Wasp Inc.

Cookies vs JWTs

Storage mechanism

Validation scheme

Overview

1. Authentication… What are we trying to do?

2. Validation Schemes (Server-Side Sessions vs. JWTs)

3. Storage Mechanisms (Cookies vs. Local Storage)

4. Final Rundown and Guidelines

Authentication

Authentication in Web Apps

● HTTP is stateless

● We want persistent user sessions

● We need to build a stateful layer on top of HTTP.

Validation Schemes
Server-side Sessions vs. Signed Tokens

Validation Schemes: Server-Side Sessions

Client Server

Storage (RAM, db, etc.)

Validation Schemes: Server-Side Sessions

Username, Password

1. User submits login credentials

Client Server

Storage (RAM, db, etc.)

Validation Schemes: Server-Side Sessions

Username, Password

1. User submits login credentials
2. Server verifies the credentials

Client Server

Storage (RAM, db, etc.)

Validation Schemes: Server-Side Sessions

Username, Password

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID

Client

Session ID Saved!

Storage (RAM, db, etc.)

Server

Validation Schemes: Server-Side Sessions

Username, Password

Session ID Saved!

Storage (RAM, db, etc.)1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID

200 OK
Client ServerSession ID

Validation Schemes: Server-Side Sessions

Do something!

Storage (RAM, db, etc.)

ServerClient

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request

Session ID

Validation Schemes: Server-Side Sessions

Do something!

Session ID?

Storage (RAM, db, etc.)

ServerClient

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request
6. Server verifies the session ID is present in the storage

Session ID

Validation Schemes: Server-Side Sessions

Do something!

It’s here!

200 OK

Storage (RAM, db, etc.)

ServerClient

Session ID

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request
6. Server verifies the session ID is present in the storage

Session ID?

Validation Schemes: Server-Side Sessions

Do something!

Not here!

401 Unauthorized

Storage (RAM, db, etc.)

ServerClient

Session ID

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request
6. Server verifies the session ID is present in the storage

Session ID?

Validation Schemes: Server-Side Sessions

Log me out!

Remove
session ID Done!

200 OK

Storage (RAM, db, etc.)

ServerClient

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request
6. Server verifies the session ID is present in the storage
7. On logout, the session ID is deleted from the server

Session ID

Validation Schemes: Server-Side Sessions

● A signed token is a string which contains a claim and everything necessary to prove it

This is Dennis and he is
authenticated.

 signature: The ·ƈƕƳƢr

Signed Tokens: JWT

● Signed Tokens come in many forms, the most popular standard is Json Web Token
(JWT)

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0N
TY3ODkwIiwibmFtZSI6Ik1pa2UgU3Bpa2UiLCJpYXQiOjE1MTYyMzk
wMjJ9.0aLy-0QwhOHe1oAMJYGD0fSdm8f4aQhPKEro6PK1tvc

{
 "alg": "HS256",
 "typ": "JWT"
}

{
 "sub": "1234567890",
 "name": "Mike Spike",
 "iat": 1516239022
}

HMACSHA256(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 server-secret-key

)

https://jwt.io/
https://jwt.io/

Validation Schemes: Signed Tokens

Client Server

Validation Schemes: Signed Tokens

Username, Password

1. User submits login credentials

Client Server

Username, Password

1. User submits login credentials
2. Server verifies the credentials

Validation Schemes: Signed Tokens

Client Server

Username, Password

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token

Validation Schemes: Signed Tokens

Client Server

Validation Schemes: Signed Tokens

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the token

Username, Password

ServerClient

Validation Schemes: Signed Tokens

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the token
5. User sends the token with each request

Do something!

ServerClient

Validation Schemes: Signed Tokens

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the token
5. User sends the token with each request
6. Server validates the token against itself

Do something!

Client Server

Validation Schemes: Signed Tokens

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the token
5. User sends the token with each request
6. Server validates the token against itself

Do something!

Client Server
200 OK

Validation Schemes: Signed Tokens

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the token
5. User sends the token with each request
6. Server validates the token against itself

Do something!

Client Server
401 Unauthorized

Validation Schemes: Signed Tokens

ServerClient

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the token
5. User sends the token with each request
6. Server validates the token against itself
7. On logout, the token is deleted from the client

Validation schemes

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request
6. Server verifies the session ID is present in the storage
7. On logout, the session ID is deleted from the server

1. User submits login credentials
2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the session ID
5. User sends the token on each request
6. Server verifies the token against itself
7. On logout, the token is deleted from the client

Server-side Sessions Cryptographically signed tokens

Do something!

200 OK!

Do something!

200 OK!

Session ID
Session ID

It’s here!

Validation schemes

1. User submits login credentials
2. Server verifies the credentials
3. Server generates and stores a session ID
4. Server responds with the session ID
5. User sends the session ID with each request
6. Server verifies the session ID is present in the storage
7. On logout, the session ID is deleted from the server

Server-side Sessions Cryptographically signed tokens
1. User submits login credentials

2. Server verifies the credentials
3. Server generates a signed token
4. Server responds with the session ID
5. User sends the token on each request
6. Server verifies the token against itself
7. On logout, the token is deleted from the client

Do something!

200 OK!

Do something!

200 OK!

Session ID
Session ID

It’s here!

Basically…

Sessions require server side storage to work, Tokens don’t.

What’s the implication?

Server-side Sessions Signed Tokens

Requires server-side storage

Log out a user from all devices

Protecting compromised accounts

Protecting against stolen session IDs / tokens

Size

Server-side implementation

Horizontal Scaling

Validation Schemes: Server-Side Storage

Server-side Sessions Signed Tokens

Requires server-side storage Yes No

Server-side Sessions

Yes- by definition :)

Signed Tokens

No - also by definition. Though, there’s a very
good change you’ll need it for other stuff
anyway.

Validation Schemes: Logout on Demand

Server-side Sessions Signed Tokens

Log out a user from all devices Yes No

Protecting compromised accounts Simple No

Protecting against stolen session IDs / tokens Simple No

Server-side Sessions

It’s enough to remove the session ID from the
server-side storage

Signed Tokens

An issued token is valid until it expires.
There’s no way to revoke it without storing
state on the server.

Validation Schemes: Logout on Demand

Server-side Sessions Signed Tokens

Log out a user from all devices Yes Yes, but…

Protecting compromised accounts Simple Doable, but…

Protecting against stolen session IDs / tokens Simple Doable, but…

Server-side Sessions

It’s enough to remove the session ID from the
server-side storage

Signed Tokens

… Each feature requires logging out all users.

Validation Schemes: Logout on Demand

Server-side Sessions Signed Tokens

Log out a user from all devices Yes No

Protecting compromised accounts Simple No

Protecting against stolen session IDs / tokens Simple No

Server-side Sessions

It’s enough to remove the session ID from the
server-side storage

Signed Tokens

So really it’s a No.

Validation Schemes: Implementation

Server-side Sessions Signed Tokens

Server-side implementation More complicated Simple

Server-side Sessions

More complicated - Requires keeping a storage
and communicating with it.

Signed Tokens

Simple - Signed tokens can be validated
with a single function call.

Validation Schemes: Size Comparison

Server-side Sessions Signed Tokens

Size Small (~ 16 Bytes) Large (~ 300 bytes)

Server-side Sessions

Small - 128-bit long string.

Signed Tokens

Long - Assumes JWT, basic header fields,
and a reasonably long secret (512 bits).

Validation Schemes: Size Comparison

JWTSession Id

Validation Schemes: Horizontal Scaling

Server-side Sessions Signed Tokens

Horizontal Scaling More complicated Simple

Server-side Sessions

More complicated - Requires additional infrastructure:
● Sticky sessions
● Sharing storage between servers

Signed Tokens

Simple - The token carries everything the
server needs for validation.

Validation Schemes: Comparing Features

Server-side Sessions Signed Tokens

Requires server-side storage Yes No*

Log out a user from all devices Yes No**

Protecting compromised accounts Simple No**

Protecting against stolen session IDs / tokens Simple No**

Size Small (~ 16 Bytes) Large (~ 300 bytes)

Server-side implementation More complicated Simple

Horizontal Scaling More complicated Simple

 * But you’ll need the storage anyway. ** Unless you want to log out all users.

Validation Schemes: Verdict

Use Server-side Sessions!

Storage Mechanisms
Cookies vs. Local Storage

Storage Mechanisms: Cookies

● Set by the server using the Set-Cookie response header

● Automatically stored by the browser

● Automatically sent by the browser in the Cookie request header

● Deleted by the server using the Set-Cookie response header

● Accessible from JS via document.cookie (unless HttpOnly)

Storage Mechanisms: Local Storage

● Browser key-value store with a simple JavaScript API

● Each site has its own instance, other sites can't access it

● Always accessible from JavaScript

● Controlled exclusively by the programmer

● Alternative: Session storage

Storage Mechanisms: Comparing Features

Cookies Local Storage

Preventing XSS

Preventing XSRF

Support different domains for client and server

Client-side implementation

Server-side implementation

Storage Mechanisms: Preventing XSS

Cookies Local Storage

Preventing XSS Simple No

Cookies

Simple - Using the HttpOnly attribute.

Local Storage

No - local storage is always accessible
from JavaScript.

Storage Mechanisms: Preventing XSRF

Cookies Local Storage

Preventing XSRF Simple No need

Cookies

Simple -Using the SameSite attribute and
Anti-XSRF tokens.

Local Storage

No need - Not vulnerable to XSRF
because the browser doesn’t
automatically send it

Storage Mechanisms: Different Domains

Cookies Local Storage

Support different domains for client and server No Yes

Cookies

No - Assuming the cookie is HttpOnly (for
XSS protection). It’s complicated.

Local Storage

Yes - Programmers have access to the
auth string and can do what they want.

https://github.com/wasp-lang/wasp/issues/573#issuecomment-1374570184

Storage Mechanisms: Different Domains

● A cookie won’t be sent to a different domain unless SameSite=None

Storage Mechanisms: Different Domains

● A cookie won’t be sent to a different domain unless SameSite=None

● SameSite=None means the Cookie is treated as a “third party cookie”

Storage Mechanisms: Different Domains

● A cookie won’t be sent to a different domain unless SameSite=None

● SameSite=None means the Cookie is treated as a “third party cookie”

● Third party cookies are used for tracking

Storage Mechanisms: Different Domains

● A cookie won’t be sent to a different domain unless SameSite=None

● SameSite=None means the Cookie is treated as a “third party cookie”

● Third party cookies are used for tracking

● Many browsers, all incognito modes, and all ad-blockers block third-party cookies

Storage Mechanisms: Different Domains

● A cookie won’t be sent to a different domain unless SameSite=None

● SameSite=None means the Cookie is treated as a “third party cookie”

● Third party cookies are used for tracking

● Many browsers, all incognito modes, and all ad-blockers block third-party cookies

● Your site barely works anywhere

Storage Mechanisms: Implementation

Cookies Local Storage

Client-side implementation Automatic Manual

Cookies

Automatic - Browser automatically sends, saves,
and deletes cookies.

Local Storage

Manual - Programmers must manually
include save, delete, and add auth
strings to requests.

Storage Mechanisms: Implementation

Cookies Local Storage

Server-side implementation Simple Less simple

Cookies

Simple - Most frameworks and libraries include
battle-tested cookie support.

Local Storage

Less simple - In most cases, you’ll have
to implement the plumbing yourself.

Storage Mechanisms: Comparing Features

Cookies Local Storage

Preventing XSS Simple* No

Preventing XSRF Simple No need

Support different domains for client and server No* Yes

Client-side implementation Automatic Manual

Server-side implementation Simple** Less simple

 * Assuming the HttpOnly attribute is set. ** Comes out-of-the-box with most frameworks.

Validation Schemes: Verdict

● Use Cookies and use:
○ HttpOnly

○ SameSite=Lax (or even SameSite=Strict) and anti-XSRF tokens

○ Secure

● If you need different domains, try not to need them :)

○ If you really need them, use local storage

Final Verdict

What to choose in my next project?

● Always try to use Server-side sessions (session IDs) over tokens (JWTs)

● Backend and frontend are:
○ On the same domain (ports don’t matter) -> Cookies

○ On different domains -> Local storage, but push for a single domain (or subdomains)

Questions?

References and Further Reading

[1] Sven Slootweg. Stop Using JWTs for Sessions. 13 Jun 2016.

[2] Sven Slootweg. Stop using JWT for sessions, part 2: Why your solution doesn't work. 19 Jun 2016.

[3] Code Realm. Authentication on the Web (Sessions, Cookies, JWT, localStorage, and more). 9 Nov 2018.

[4] Ben Awad. JWT vs Cookies for Authentication. 14 Oct 2018.

[5] Fireship. Session vs Token Authentication in 100 Seconds. 29 Oct 2020.

[6] Wasp. Authentication in Wasp. 7 Jan 2023.

[7] Wasp. Swapping Local Storage with Cookies and preventing CSRF. 16 Jun 2022.

[8] OWASP. Cross-Site Request Forgery Prevention Cheat Sheet. May 2023.

[9] Information Security Stack Exchange. Will same-site cookies be sufficient protection against CSRF and XSS? 30 Apr 2016.

http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/
http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/
https://www.youtube.com/watch?v=2PPSXonhIck
https://www.youtube.com/watch?v=o9hT7v0OLJc
https://www.youtube.com/watch?v=UBUNrFtufWo
https://github.com/wasp-lang/wasp/issues/573#issuecomment-1374570184
https://github.com/wasp-lang/wasp/pull/635
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://security.stackexchange.com/questions/121971/will-same-site-cookies-be-sufficient-protection-against-csrf-and-xss/121986#121986

References and Further Reading

[10] IETF. RFC 6265: HTTP State Management Mechanisms. April 2011.

[11] HTTP Working Group. Cookies: HTTP State Management Mechanism. 19 Jun 2016.

[12] Stack overflow. Difference between CSRF and X-CSRF-Token. 14 Jan 2016.

[13] Information Security Stack Exchange. How does CSRF correlate with Same Origin Policy. 10 Apr 2017.

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-02#section-5.3.7.1
https://stackoverflow.com/questions/34782493/difference-between-csrf-and-x-csrf-token
https://security.stackexchange.com/questions/157061/how-does-csrf-correlate-with-same-origin-policy

