
Programming in Haskell 
(PUH)

FER, Zagreb, 2024



The plan

● Why Haskell?
● About the course
● Lecture



Why Haskell?



Haskell is the flagship language of 
functional programming.
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So, why functional programming?



● Employability
● Improved skills in all languages
● Fun and interesting



Haskell is the breeding ground for 
bleeding-edge features and constructs.
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Haskell is a language designer’s 
favorite language.
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Haskell in a nutshell

- declarative vs imperative
- statically-typed vs dynamically-typed
- strongly-typed vs loosely-typed
- functional vs procedural vs object-oriented vs …
- pure vs allowing side effects
- lazy vs eager
- type inference vs manifest typing
- nominal typing vs structural typing
- immutable vs mutable







You will learn not only Haskell…
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- Learn to use Git and GitHub
- Get professional code reviews
- Get a bunch of learning resources (Haskell or otherwise)
- Learn to use the CLI and other industry-standard tools
- Learn more about programming languages in general.
- Get to talk with us about anything you want (careers, linux, editor setup…)

You will also…



About the course…
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How the course works

● Lectures
○ Held in person
○ Mandatory, 1 absence allowed
○ Full schedule available on Ferweb (mostly Thursdays)

● Training Exercises
○ Homeworks given after each lecture (give or take)
○ Submitted through GitHub
○ All homeworks must pass unit tests and TA code review

● Seminar
○ A larger practical project
○ Handed out in the second cycle
○ Must pass an in-person review at the end of the semester



To pass, you must:

● Attend lectures
● Submit homeworks on time
● Hand in the seminar



Our Discord server is the source of truth for all 
materials and announcements:

https://discord.gg/xvGb5jp8


