
Programming in Haskell 
(PUH)

FER, Zagreb, 2024



The plan

● Why Haskell?
● About the course
● Lecture



Why Haskell?



Haskell is the flagship language of 
functional programming.

1



So, why functional programming?



● Employability
● Improved skills in all languages
● Fun and interesting



Haskell is the breeding ground for 
bleeding-edge features and constructs.

2



Haskell is a language designer’s 
favorite language.



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Pattern matching

Algebraic data types

Typeclasses (Ad-hoc polymorphism)

Polymorphic type inferenceList comprehensions

Non-strict semantics

First-class functions
Effect systems

Higher order functions

Lazy evaluation

Metaprogramming
Currying

Sections

First-class operators

Memory safety

Static typing
Tail-call optimization Higher-kinded polymorphism



Haskell in a nutshell

- declarative vs imperative
- statically-typed vs dynamically-typed
- strongly-typed vs loosely-typed
- functional vs procedural vs object-oriented vs …
- pure vs allowing side effects
- lazy vs eager
- type inference vs manifest typing
- nominal typing vs structural typing
- immutable vs mutable







You will learn not only Haskell…

3



- Learn to use Git and GitHub
- Get professional code reviews
- Get a bunch of learning resources (Haskell or otherwise)
- Learn to use the CLI and other industry-standard tools
- Learn more about programming languages in general.
- Get to talk with us about anything you want (careers, linux, editor setup…)

You will also…



About the course…



Filip Sodić

Luka HadžiegrićAnte Kegalj

Mihovil Ilakovac

Lecturers



Janko VidakovićDonik Vršnak Miho Hren

Teaching assistants

Anton Vučinić Nikola Kraljević Mislav Đomlija



Martin Šošić
(CTO @ Wasp)

Jan Šnajder
(Chief Lecturer)

Matija Šošić
(CEO @ Wasp)

Guest Lecturers



How the course works

● Lectures
○ Held in person
○ Mandatory, 1 absence allowed
○ Full schedule available on Ferweb (mostly Thursdays)

● Training Exercises
○ Homeworks given after each lecture (give or take)
○ Submitted through GitHub
○ All homeworks must pass unit tests and TA code review

● Seminar
○ A larger practical project
○ Handed out in the second cycle
○ Must pass an in-person review at the end of the semester



To pass, you must:

● Attend lectures
● Submit homeworks on time
● Hand in the seminar



Our Discord server is the source of truth for all 
materials and announcements:

https://discord.gg/xvGb5jp8


